Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter.
نویسندگان
چکیده
Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of a Petunia hybrida adenosine triphosphate-binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport. PhABCG1 down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission.
منابع مشابه
Ethylene-regulated floral volatile synthesis in petunia corollas.
In many flowering plants, such as petunia (Petunia x hybrida), ethylene produced in floral organs after pollination elicits a series of physiological and biochemical events, ultimately leading to senescence of petals and successful fertilization. Here, we demonstrate, using transgenic ethylene insensitive (44568) and Mitchell Diploid petunias, that multiple components of emission of volatile or...
متن کاملRegulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals
In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds occurs in these cells. However, whether the entire pathway is active in these cells and whether i...
متن کاملRegulation of methylbenzoate emission after pollination in snapdragon and petunia flowers.
The molecular mechanisms responsible for postpollination changes in floral scent emission were investigated in snapdragon cv Maryland True Pink and petunia cv Mitchell flowers using a volatile ester, methylbenzoate, one of the major scent compounds emitted by these flowers, as an example. In both species, a 70 to 75% pollination-induced decrease in methylbenzoate emission begins only after poll...
متن کاملCircadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers.
Carotenoids are thought to be the precursors of terpenoid volatile compounds that contribute to flavor and aroma. One such volatile, beta-ionone, is important to fragrance in many flowers, including petunia (Petunia hybrida). However, little is known about the factors regulating its synthesis in vivo. The petunia genome contains a gene encoding a 9,10(9',10') carotenoid cleavage dioxygenase, Ph...
متن کاملODORANT1 Regulates Fragrance Biosynthesis in Petunia Flowers W
Floral scent is important to plant reproduction because it attracts pollinators to the sexual organs. Therefore, volatile emission is usually tuned to the foraging activity of the pollinators. In Petunia hybrida, volatile benzenoids determine the floral aroma. Although the pathways for benzenoid biosynthesis have been characterized, the enzymes involved are less well understood. How production ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 356 6345 شماره
صفحات -
تاریخ انتشار 2017